(1)条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。
作用:从条形统计图中很容易看出各种数量的多少。
(2)拆线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。
作用:折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。
(3)扇形统计图:扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。
作用:通过扇形统计图可以很清楚地表示各部分数量同总数之间的关系。
条形统计图主要用于表示离散型数据资料,即计数数据。
单式条形统计图和复式条形统计图的相同点是都能让人清楚地看出 数量的多少。不同点就是单式条形统计图用于比较一个物体,而复式条形统计图用于比较多个物体的数量。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数。比值nA/n称为事件A发生的频率,并记为fn(A).用文字表示定义为:每个对象出现的次数与总次数的比值是频率。
扩展资料:
随机事件在n次试验中发生m次的相对频次m/n。一般物理科学中频率指每秒中的振动次数,可以是随机的,也可以是确定性的。
在一定条件下,对所研究的对象进行观察或测验,每实现一次条件组,称为一次试验。其结果称为事件。在一次试验中,可能发生也可能不发生的事件称为随机事件。
随机事件A发生的概率p(A)是该事件出现的可能性大小的度量。其数值在0与1之间。在一定条件下进行试验,如果事件A不可能发生,则p(A)=0;如果事件A必然发生,则p(A)=1。随着试验次数n的增大,频率接近于概率的可能性也越大,即:式中δ是任意小数值。
函数图象是函数的一种表达方式,函数图象上的每个点都有确定的意义,它表示自变量和因变量的一对对取值,也就是说在函数图象上任意取一点,就相应地有一对函数的自变量和因变量的取值与之对应;有一对函数的自变量和因变量的取值,就相应地有一个图象上的点与之对应。
扇形统计图可以更清楚的了解各部分数量同总数之间的关系。扇形统计图可以让一些杂乱无章的数据变得清晰透彻,使人看上去一目了然,利于计算各种数据,变得更加方便,快捷!
参考资料来源:搜狗百科——条形统计图
参考资料来源:搜狗百科——折线统计图
参考资料来源:搜狗百科——扇形统计图
本文地址:https://www.39baobao.com/show/33_35004.html
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请联系我们,我们会及时处理和回复,谢谢.